Dual impact analysis of GSTT1 polymorphisms on the metformin response and cardiovascular risk: A novel integrated approach in type 2 diabetes mellitus management
DOI:
https://doi.org/10.70347/svsthya.v2i1.76Keywords:
GSTT1 polymorphism, metformin, cardiovascular risk, type 2 diabetes mellitus, pharmacogeneticsAbstract
Although genetic variations in glutathione S-transferase (GST) have been linked to type 2 diabetes mellitus (T2DM), the relationships among GSTT1 polymorphisms, metformin effectiveness, and cardiovascular risk remain unclear. This study investigated the association between the GSTT1 null genotype and the metformin monotherapy response while simultaneously assessing its impact on atherosclerotic cardiovascular disease risk. This case-control study examined 84 T2DM patients aged 30-70 years, categorized into metformin therapy responders and nonresponders. This study employed multiplex PCR for GSTT1 genotyping and utilized the pooled cohort equation for cardiovascular risk assessment, offering a comprehensive analysis of both genetic and clinical parameters. GSTT1 genetic variations were not significantly associated with metformin response (odds ratio [OR] 1.773, p=0.306) or cardiovascular risk (OR 1.086, 95% CI: 0.46-2.56, p=1.000). The analysis revealed distinct patterns in clinical parameters between the GSTT1 null and wild-type genotypes, particularly in terms of glycemic control indicators and lipid profiles, although these differences did not reach statistical significance. This study presents a novel approach by simultaneously examining both the therapeutic response and cardiovascular risk in relation to GSTT1 polymorphisms, distinguishing it from previous studies that typically focused on either aspect in isolation. These findings suggest that while genetic variations in GSTT1 may influence metabolic parameters, their direct impact on metformin effectiveness and cardiovascular risk may be more complex than previously thought.
Downloads
References
Cornean C, Catana A, Maniu A. Do polymorphisms of the TERT, GSTM1, and GSTT1 genes increase laryngeal cancer susceptibility in smokers of Romanian descent? Medicina (Kaunas) 2022;58(8):1–13. https://doi.org/10.3390/medicina58081106
Alamgir M, Jamal Q, Mirza T. Genetic profiles of different ethnicities living in Karachi as regards to tobacco-metabolising enzyme systems and the risk of oral cancer. J Pak Med Assoc 2022;72(6):6–24. https://doi.org/10.47391/JPMA.3053
Singar S, Nagpal R, Arjmandi BH, Akhavan NS. Personalized Nutrition: tailoring dietary recommendations through genetic insights. Nutrients 2024;16:2673. https://doi.org/10.3390/nu16162673.
Wan H, Zhou Y, Yang P, Chen B, Jia G, Wu X. Genetic polymorphism of glutathione S-transferase T1 and the risk of colorectal cancer: A meta-analysis. Cancer Epidemiol 2010;34:66–72. https://doi.org/10.1016/j.canep.2009.12.006.
Firigato I, López R, Curioni O, J DA, Gattás GF de TGF. Many hands make light work: CNV of GSTM1 effect on the oral carcinoma risk. Cancer Epidemiol 2022;78(1):102–50. https://doi.org/10.1016/j.canep.2022.102150
Imani M, Moradi M, Rezaei F, HR M, R S, M S. Association between alcohol dehydrogenase polymorphisms (rs1229984, rs1573496, rs1154460, and rs284787) and susceptibility to head and neck cancers: A systematic review and meta-analysis. Arch Oral Biol 2024;16(1):105–898. https://doi.org/10.1016/j.archoralbio.2024.105898.
Katiyar T, Yadav V, Maurya S, Ruwali M, Singh M HF. Interaction of glutathione-s-transferase genotypes with environmental risk factors in determining susceptibility to head and neck cancer and treatment response and survival outcome. Environ Mol Mutagen 2020;61(5):574−84. https://doi.org/10.1002/em.22362.
Maniglia M, Russo A, Biselli-Chicote P, Oliveira-Cucolo JG, RodriguesFleming GH MJ. Glutathione S-transferase polymorphisms in head and neck squamous cell carcinoma treated with chemotherapy and/or radiotherapy. Asian Pac J Cancer Prev 2020;21(6):1637–44. https://doi.org/10.31557/APJCP.2020.21.6.1637.
Mohammadi H, Roochi MM, Rezaei F, Garajei A, Heidar H GB. Association between the CYP1A1 MspI polymorphism and risk of head and neck cancer: a meta-analysis. Sci Rep 2022;12(1):15–27. https://doi.org/10.1038/s41598-022-05274-z
Park J-O, Nam I-C, Kim C-S, Park S-J, Lee D-H KH-B. Sex differences in the prevalence of head and neck cancers: a 10-year follow-up study of 10 million healthy people. Cancers 2022;14(10):25–21. https://doi.org/10.3390/cancers14102521
Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I JA. Global cancer statistics: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209−49. https://doi.org/10.3322/caac.21834
Paulus AY, Sulaeman, Mayasari AC, Ayu JD, Musniati N, Sari MP, et al. Biostatistika Epidemiologi. 1st ed. Bandung: CV. Media Sains Indonesia; 2023.
Di Giacomo C, Malfa GA, Tomasello B, Bianchi S, Acquaviva R. natural compounds and glutathione: beyond mere antioxidants. Antioxidants 2023;12:1445. https://doi.org/10.3390/antiox12071445.
Yang Y. Role of α class glutathione s-transferases as antioxidant enzymes in rodent tissues. Toxicol Appl Pharmacol 2002;182:105–15. https://doi.org/10.1006/taap.2002.9450.
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 2023;11:1158198. https://doi.org/10.3389/fchem.2023.1158198.
Mazari AMA, Zhang L, Ye Z-W, Zhang J, Tew KD, Townsend DM. The multifaceted role of glutathione s-transferases in health and disease. Biomolecules 2023;13:688. https://doi.org/10.3390/biom13040688.
Mo Z, Huang Y, Pu T, Duan L, Pi K, Luo J, et al. Genome-wide identification and characterization of Glutathione S-Transferases (GSTs) and their expression profile under abiotic stresses in tobacco (Nicotiana tabacum L.). BMC Genomics 2023;24:341. https://doi.org/10.1186/s12864-023-09450-x.
Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol 2015;289:361–70. https://doi.org/10.1016/j.taap.2015.10.006.
Polimanti R, Carboni C, Baesso I, Piacentini S, Iorio A, De Stefano GF, et al. Genetic variability of glutathione S-transferase enzymes in human populations: Functional inter-ethnic differences in detoxification systems. Gene 2013;512:102–7. https://doi.org/10.1016/j.gene.2012.09.113.
Fu S, Wu J, Chen F, Sun D, Fu S. Polymorphisms of Glutathione S-transferases Omega-1 among ethnic populations in China. BMC Genet 2008;9:29. https://doi.org/10.1186/1471-2156-9-29.
Buratti FM, Darney K, Vichi S, Turco L, Di Consiglio E, Lautz LS, et al. Human variability in glutathione-S-transferase activities, tissue distribution and major polymorphic variants: Meta-analysis and implication for chemical risk assessment. Toxicol Lett 2021;337:78–90. https://doi.org/10.1016/j.toxlet.2020.11.007.
Dai X, Dharmage SC, Lodge CJ. Interactions between glutathione S-transferase genes and household air pollution on asthma and lung function. Front Mol Biosci 2022;9:955193. https://doi.org/10.3389/fmolb.2022.955193.
Medjani S, Chellat-Rezgoune D, Kezai T, Chidekh M, Abadi N, Satta D. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of prostate cancer in Algerian population. Afr J Urol 2020;26:44. https://doi.org/10.1186/s12301-020-00049-2.
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023;22:317–35. https://doi.org/10.1038/s41573-022-00633-x.
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, et al. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021;43:101995. https://doi.org/10.1016/j.redox.2021.101995.
Bocedi A, Noce A, Marrone G, Noce G, Cattani G, Gambardella G, et al. Glutathione transferase p1-1 an enzyme useful in biomedicine and as biomarker in clinical practice and in environmental pollution. Nutrients 2019;11:1741. https://doi.org/10.3390/nu11081741.
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018;7:8. https://doi.org/10.1038/s41389-017-0025-3.
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020;21:6275. https://doi.org/10.3390/ijms21176275.
Azevedo MMP, Marqui ABT de, Bacalá BT, Balarin MAS, Resende EAMR de, Lima MFP, et al. Polymorphisms of the GSTT1 and GSTM1 genes in polycystic ovary syndrome. Rev Assoc Med Bras 2020;66:1560–5. https://doi.org/10.1590/1806-9282.66.11.1560.
Sharma N, Singh A, Singh N, Behera D, Sharma S. Genetic polymorphisms in GSTM1, GSTT1 and GSTP1 genes and risk of lung cancer in a North Indian population. Cancer Epidemiol 2015;39:947–55. https://doi.org/10.1016/j.canep.2015.10.014.
Mekuria A, Seyoum T, Alemayehu D, Abebe M, Nedi T, Abula T, et al. Copy number variation in the GSTM1 and GSTT1 genes and the risk of liver cirrhosis in Eastern Ethiopia. Appl Clin Genet 2023;16:171–9. https://doi.org/10.2147/TACG.S435852.
González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci 2023;24:9352. https://doi.org/10.3390/ijms24119352.
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023;8:152. https://doi.org/10.1038/s41392-023-01400-z.
Santos-Marcos JA, Mora-Ortiz M, Tena-Sempere M, Lopez-Miranda J, Camargo A. Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 2023;14:4. https://doi.org/10.1186/s13293-023-00490-2.
Souza CL, Barbosa CG, Moura Neto JP de, Barreto JH, Reis MG, Gonçalves MS. Polymorphisms in the glutathione S-transferase theta and mu genes and susceptibility to myeloid leukemia in Brazilian patients. Genet Mol Biol 2008;31:39–41. https://doi.org/10.1590/S1415-47572008000100008.
Ferreira S, Auray-Blais C, Boutin M, Lavoie P, Nunes JP, Martins E, et al. Variations in the GLA gene correlate with globotriaosylceramide and globotriaosylsphingosine analog levels in urine and plasma. Clinica Chimica Acta 2015;447:96–104. https://doi.org/10.1016/j.cca.2015.06.003.
Oliveira JP, Ferreira S. Multiple phenotypic domains of Fabry disease and their relevance for establishing genotype–phenotype correlations. Appl Clin Genet 2019;Volume 12:35–50. https://doi.org/10.2147/TACG.S146022.
Lynch CP, Gebregziabher M, Axon RN, Hunt KE, Payne E, Egede LE. Geographic and racial/ethnic variations in patterns of multimorbidity burden in patients with type 2 diabetes. J Gen Intern Med 2015;30:25–32. https://doi.org/10.1007/s11606-014-2990-y.
Tham KW, Abdul Ghani R, Cua SC, Deerochanawong C, Fojas M, Hocking S, et al. Obesity in South and Southeast Asia—A new consensus on care and management. Obesity Reviews 2023;24. https://doi.org/10.1111/obr.13520.
Moon JS, Kang S, Choi JH, Lee KA, Moon JH, Chon S, et al. 2023 Clinical practice guidelines for diabetes management in Korea: full version recommendation of the Korean Diabetes Association. Diabetes Metab J 2024;48:546–708. https://doi.org/10.4093/dmj.2024.0249.
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care 2022;45:2753–86. https://doi.org/10.2337/dci22-0034.
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023;8:220. https://doi.org/10.1038/s41392-023-01439-y.
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015;6:456. https://doi.org/10.4239/wjd.v6.i3.456.
Mallik S, Paria B, Firdous SM, Ghazzawy HS, Alqahtani NK, He Y, et al. The positive implication of natural antioxidants on oxidative stress-mediated diabetes mellitus complications. J Genet Eng Biotechnol 2024;22:100424. https://doi.org/10.1016/j.jgeb.2024.100424.
Vekic J, Stromsnes K, Mazzalai S, Zeljkovic A, Rizzo M, Gambini J. Oxidative stress, atherogenic dyslipidemia, and cardiovascular risk. Biomedicines 2023;11:2897. https://doi.org/10.3390/biomedicines11112897.
Perkeni. Buku pedoman konsensus pengelolaan dan pencegahan diabetes melitus tipe 2 di Indonesia. Jakarta; 2015.
Sadafi S, Choubsaz P, Kazemeini SMM, Imani MM, Sadeghi M. Glutathione S-transferase theta 1 (GSTT1) deletion polymorphism and susceptibility to head and neck carcinoma: a systematic review with five analyses. BMC Cancer 2024;24:885. https://doi.org/10.1186/s12885-024-12618-7.
Nakanishi G, Pita-Oliveira M, Bertagnolli LS, Torres-Loureiro S, Scudeler MM, Cirino HS, et al. Worldwide systematic review of GSTM1 and GSTT1 Null genotypes by continent, ethnicity, and therapeutic area. OMICS 2022;26:528–41. https://doi.org/10.1089/omi.2022.0090.
Ge B, Song Y, Zhang Y, Liu X, Wen Y, Guo X. Glutathione S-Transferase M1 (GSTM1) and T1 (GSTT1) null polymorphisms and the risk of hypertension: A meta-analysis. PLoS One 2015;10:e0118897. https://doi.org/10.1371/journal.pone.0118897.
Khosravi MH, Sharafi H, Alavian SM. Association of GSTM1 and GSTT1 Null Deletions and GSTP1 rs1695 polymorphism with the risk of hepatocellular carcinoma: A systematic review and meta-analysis. Hepat Mon 2021;20. https://doi.org/10.5812/hepatmon.105632.
Chung WK, Erion K, Florez JC, Hattersley AT, Hivert M-F, Lee CG, et al. Precision medicine in diabetes: a consensus report from the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care 2020;43:1617–35. https://doi.org/10.2337/dci20-0022.
Borra SS, Jane NR, Palaniappan D, Subramanian R, Patankar MA, Krishnamoorthy SG, et al. Genetic polymorphism of organic cation transporter 2 (OCT2) and its effects on the pharmacokinetics and pharmacodynamics of Metformin: a narrative review. Egypt J Med Hum Genet 2023;24:13. https://doi.org/10.1186/s43042-023-00388-z.
Damanhouri ZA, Alkreathy HM, Alharbi FA, Abualhamail H, Ahmad MS. A Review of the Impact of pharmacogenetics and metabolomics on the efficacy of metformin in type 2 diabetes. Int J Med Sci 2023;20:142–50. https://doi.org/10.7150/ijms.77206.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Luh Made Noviana Dewi (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license enables reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.