The Isolation of mercury-resistant bacteria in the Brantas River, Malang, Indonesia

Authors

DOI:

https://doi.org/10.70347/svsthya.v2i1.77

Keywords:

Bacterial, isolation, mercury-resistant bacteria, pollution, environmental toxicology

Abstract

Mercury (Hg) is a toxic heavy metal that can originate from various sources, such as gold mining, the industrial sector, atmospheric deposition, and natural activities. Mercury contamination can cause liver, kidney, and enzyme system damage, as well as DNA damage. Because microorganisms are more sensitive to heavy metal stress than are animals and plants, the characteristics of microorganisms can be potential indicators of environmental health. This study aimed to isolate and identify mercury-resistant bacteria in the Brantas River, Malang as potential indicators of Hg pollution. Samples were isolated on nutrient agar (NA) media supplemented with 0.01 ppm HgCl₂ as a selective medium. The growing bacterial colonies were purified, and further resistance tests were carried out by adding HgCl₂ at concentrations of 0.03 ppm, 0.05 ppm, and 0.1 ppm. Bacterial isolates that survived at a concentration of 0.1 ppm HgCl₂ were then tested for sensitivity to concentrations of 0.15 ppm and 0.2 ppm HgCl₂. Bacterial isolation via HgCl₂ 0.01 ppm selective media produced 28 bacterial isolates. Further testing revealed that 19 isolates were resistant to 0.03 ppm HgCl₂, 13 isolates (0.05 ppm), and five isolates (0.1 ppm. Sensitivity tests on five bacterial isolates revealed that at a HgCl₂ concentration of 0.15 ppm, isolates RS118, RS1221, and RS1323 showed no growth inhibition, whereas at a concentration of 0.2 ppm, an inhibition zone formed for all five isolates. Although mercury-resistant bacteria were detected, this finding does not directly indicate the presence of mercury pollution in the river because bacterial resistance can be caused by various factors, including horizontal gene transfer between bacterial communities. Comprehensive testing of Hg concentrations in rivers is required to accurately determine the status of Hg pollution. This study highlights the importance of considering multiple biomarkers and environmental parameters alongside bacterial resistance patterns when assessing Hg contamination in riverine ecosystems.

Downloads

Download data is not yet available.

Author Biography

Deni Harmoko, Department of Microbiology, Faculty of Health Sciences, Universitas Maarif Hasyim Latif

Department of Microbiology, Faculty of Health Sciences, Universitas Maarif Hasyim Latif

References

Azizah M, Maslahat M. Heavy metal content of lead (Pb), cadmium (Cd), and mercury (Hg) in the body of wader fish (Barbodes binotatus) and Cikaniki river water, Bogor Regency. Limnotek 2021;28:83–93. https://doi.org/10.14203/limnotek.v28i2.331.

Khastini RO, Zahranie LR, Rozma RA, Saputri YA. Review: the role of bacteria degrading environmental polluting compounds through the bioremediation process. Bioscientist J Ilm Biol 2022;10:345. https://doi.org/10.33394/bioscientist.v10i1.4836.

Tanwer N, Bumbra P, Khosla B, Laura JS. Mercury pollution and its bioremediation by microbes. Microbes and Microbial Biotechnology for Green Remediation, Netherlands: Elsevier B.V; 2022, p. 651–64. https://doi.org/10.1016/B978-0-323-90452-0.00005-0.

Pushkar B, Sevak P, Singh A. Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river. Appl Water Sci 2019;9:117. https://doi.org/10.1007/s13201-019-0998-5.

Rahman Z, Singh VP. Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J Biol Sci 2018;25:1687–95. https://doi.org/10.1016/j.sjbs.2016.09.018.

Tiodar ED, Văcar CL, Podar D. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health 2021;18:2435. https://doi.org/10.3390/ijerph18052435.

Basu N, Bastiansz A, Dórea JG, Fujimura M, Horvat M, Shroff E, et al. Our evolved understanding of the human health risks of mercury. Ambio 2023;52:877–96. https://doi.org/10.1007/s13280-023-01831-6.

Basu N, Abass K, Dietz R, Krümmel E, Rautio A, Weihe P. The impact of mercury contamination on human health in the Arctic: A state of the science review. Science of The Total Environment 2022;831:154793. https://doi.org/10.1016/j.scitotenv.2022.154793.

Siregar GJR, Damopoli RR, Nurfika G. Dampak merkuri pada kesehatan manusia di sektor pertambangan emas skala kecil. 1st ed. Jakarta: UNDP Indonesia; 2020.

Tambunan HNR, Balebu DW, Kahar, Mertha IM, Lenakoly TY, Bakhri S, et al. Penyakit Berbasis Lingkungan. 1st ed. Bandung: CV. Media Sains Indonesia; 2023.

Kristianingsih Y. Mercury hazard in the Lebaksitu small scale gold mining (ASGM) Community. J Ilm Kesehat 2019;10:32–8. https://doi.org/10.37012/jik.v10i1.12.

Wang L, Wang L, Zhan X, Huang Y, Wang J, Wang X. Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils. Ecotoxicol Environ Saf 2020;188:109906. https://doi.org/10.1016/j.ecoenv.2019.109906.

Yao H, Wang H, Ji J, Tan A, Song Y, Chen Z. Isolation and identification of mercury-tolerant bacteria Lba119 from molybdenum-lead mining soils and their removal of Hg2+. Toxics 2023;11:261. https://doi.org/10.3390/toxics11030261.

Li X, Wang X, Zhao L, Wang Z, Teng Y, Luo Y. Mercury enrichment characteristics and rhizosphere bacterial community of ramie (Boehmeria nivea L. Gaud.) in mercury-contaminated soil. Sustainability 2023;15:6009. https://doi.org/10.3390/su15076009.

Sudaryati NLG, Adnyana IMDM. Efficacy of solid and liquid Biolistics in improving the nutrients in latosol soil from Bali, Indonesia. Eur J Soil Sci 2024;13. https://doi.org/10.18393/ejss.1432873.

Mangesa R, Kasmawati K. Isolation of mercury resistance bacteria from gold mining waste in Buru District, Maluku. J Manusia Lingkung 2020;27:33. https://doi.org/10.22146/jml.47864.

Alfi NIN. Analisis kandungan bahan organik di sungai Brantas Hulu. Universitas Brawijaya, 2018.

Hayati A, Tiantono N, Mirza MF, Putra IDS, Abdizen MM, Seta AR, et al. Water quality and fish diversity in the Brantas River, East Java, Indonesia. Berk Penelit Hayati 2017;22:43–9. https://doi.org/10.23869/bphjbr.22.2.20172.

Nur Aini AI, K. A. SM. Identification of plankton diversity as a bioindicator of water pollution in Brantas River. Environ Pollut J 2023;2:45. https://doi.org/10.58954/epj.v2i2.45.

Lusiana N, Sulianto AA, Devianto LA, Sabina S. Determination of water pollution index and capacity of pollution load using QUAL2Kw software (case study of Brantas River Malang City). J Wil Lingkung 2020;8:161–76. https://doi.org/10.14710/jwl.8.2.161-176.

Irawanto R. Water quality analysis and water pollution effect from upstream to downstream of Brantas River - East Java. J Pembang Alam Lestari 2024;15:24–30. https://doi.org/10.21776/ub.jpal.2024.015.01.04.

Wiratmojo MA, Tri Budi Prayogo, Emma Yuliani. Nitrate and Phosphate pollution load capacity of brantas river Sengkaling-Tlogomas section, Malang City. J Tek Rek Sumber Daya Air 2023;3:205–16. https://doi.org/10.21776/ub.jtresda.2023.003.2.018.

Hertika AMS, Sudaryanti S, Musa M, Amron K, Putra RBDS, Alfarisi MA, et al. Benthic macroinvertebrates as bioindicators to detect the level of water pollution in the upstream segment of Brantas River Watershed in Malang, East Java, Indonesia. Biodiversitas 2024;25:d250222. https://doi.org/10.13057/biodiv/d250222.

Adnyana IMDM. Prinsip Epidemiologi. In: Asir AI, editor. Epidemiologi Penyakit Menular. 1st ed., Bandung: CV Media Sains Indonesia; 2022, p. 19–40.

Adnyana IMDM. Studi Ekologi. In: Akbar H, editor. Metode Penelitian Epidemiologi. 1st ed., Bandung: CV Media Sains Indonesia; 2023, p. 31–51.

Amelia TF, Baehaki A, Herpandi H. Mercury reduction activity of bacteria isolated from water and sediment in Musi River. J FishtecH 2016;5:94–106. https://doi.org/10.36706/fishtech.v5i1.3522.

Veeraraghavan N, Kalyanaraman V, Visalakshi VK. Australian and New Zealand Guidelines for fresh and marine water quality. vol. 54. 1966.

Wyasena PNTS, Sudaryati NLG, Sudiartawan IP, Adnyana IMDM. Evaluation of refillable drinking water quality based on MPN coliform and escherichia coli in Sesetan Village, South Denpasar, Bali. J Vocat Health Stud 2022;6:93–101. https://doi.org/10.20473/jvhs.V6.I2.2022.93-101.

Woods LC, Gorrell RJ, Taylor F, Connallon T, Kwok T, McDonald MJ. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc Natl Acad Sci 2020;117:26868–75. https://doi.org/10.1073/pnas.2005331117.

Popoola OJ, Ogundele OD, Ladapo EA, Senbore S. The impact of heavy metal contamination in soils on soil microbial communities and its potential health risks for humans. Soil Microbiome in Green Technology Sustainability, Cham: Springer Nature Switzerland; 2024, p. 351–75. https://doi.org/10.1007/978-3-031-71844-1_15.

Zheng X, Cao H, Liu B, Zhang M, Zhang C, Chen P, et al. Effects of mercury contamination on microbial diversity of different kinds of soil. Microorganisms 2022;10:977. https://doi.org/10.3390/microorganisms10050977.

Boni BPW, Turnip M, Kurniatuhadi R. The growth of Bacillus cereus (IHB B 379) isolates at different temperature and concentration of mercury chloride (HgCl2). Biol Samud 2023;4:136–49. https://doi.org/10.33059/jbs.v4i2.4893.

Mirzaei N, Kafilzadeh F, Kargar M. Isolation and identification of mercury resistant bacteria from Kor River, Iran. J Biol Sci 2008;8:935–9. https://doi.org/10.3923/jbs.2008.935.939.

Assa SM, Kepel B, Bodhi W. Isolation and identification of mercury resistant bacteria in the coastal Buyat sea. E-Biomed 2019;7:137–42. https://doi.org/10.35790/ebm.v7i2.25505.

Quintero M, Zuluaga-Valencia SD, Ríos-López LG, Sánchez O, Bernal CA, Sepúlveda N, et al. Mercury-resistant bacteria isolated from an estuarine ecosystem with detoxification potential. Microorganisms 2024;12:2631. https://doi.org/10.3390/microorganisms12122631.

Ihtasham M, Irshad S, Mohsin H. Isolation and growth optimization of mercury-resistant bacteria isolated from river Ravi. Nat Sym 2023;1:08–20. https://doi.org/10.69547/NS.12.02.

Christakis CA, Barkay T, Boyd ES. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic archaea. Front Microbiol 2021;12:682605. https://doi.org/10.3389/fmicb.2021.682605.

Rahim SW, Sriramadani N, Kudsiah H, Suwarni, Nadiarti, Yanuarita D. Analysis of lead (Pb) and cadmium (Cd) concentration in Tawes Fish Barbonymus gonionotus (Bleeker, 1850) in Lakes of Tempe, Sidenreng and Lapompakka, South Sulawesi. IOP Conf Ser Earth Environ Sci 2022;1119:012087. https://doi.org/10.1088/1755-1315/1119/1/012087.

Sanjaya WTA, Khoirunnisa NS, Ismiani S, Hazra F, Santosa DA. Isolation and characterization of mercury-resistant microbes from gold mine area in mount pongkor, bogor district, indonesia. Biodiversitas 2021;22:2656–66. https://doi.org/10.13057/biodiv/D220714.

Du J, Ren Y, Li J, Zhang S, Huang H, Liu J. The study on the effect of mercury pollution on soil microorganisms around mercury mining area. Sci Rep 2023;13:21605. https://doi.org/10.1038/s41598-023-48932-6.

Dietz R, Wilson S, Loseto LL, Dommergue A, Xie Z, Sonne C, et al. Special issue on the AMAP 2021 assessment of mercury in the Arctic. Sci Total Environ 2022;843:157020. https://doi.org/10.1016/j.scitotenv.2022.157020.

Lin H, Moody ERR, Williams TA, Moreau JW. On the Origin and Evolution of Microbial Mercury Methylation. Genome Biol Evol 2023;15:evad051. https://doi.org/10.1093/gbe/evad051.

Moura de Sousa J, Lourenço M, Gordo I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023;31:513–27. https://doi.org/10.1016/j.chom.2023.03.017.

Hal VN, Damanik N, Febriani H, Mayasari U. Isolation and Identification of Mercury Resistant Bacteria from River Water Around Batang Toru Gold Mine, North Sumatra. Best Biol Edu Sci Tech 2023;6:521–7. https://doi.org/10.30743/best.v6i2.7979.

Downloads

Published

2025-01-05

How to Cite

Harmoko, D. (2025). The Isolation of mercury-resistant bacteria in the Brantas River, Malang, Indonesia. Svāsthya: Trends in General Medicine and Public Health, 2(1), e77. https://doi.org/10.70347/svsthya.v2i1.77

Issue

Section

Original Articles